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A. OBJECTIVES 
 

To develop a wavelet-based algorithm for the fast-forward computation of the 
gravitational potential generated from arbitrarily complicated finite element models of the 
Earth’s mass density.  The primary motivation for the development of computationally efficient 
forward modeling is the future launch of sensitive gravity-gradiometer missions, which promise 
to return highly sensitive data with the potential of offering insight into the structure of the 
Earth’s mass density.  Traditional methods relate the observed gravitational potential to the 
estimated mass density through spherical harmonics.  However, a decomposition in terms of 
these global-basis functions results in a decreased signal-to-noise for localized geophysical 
processes.  What has not been fully exploited for both the forward and inverse solutions to the 
gravitational-inference problem is the use of spatially localized basis functions to represent the 
mass-density fluctuations.  Such a wavelet-based expansion can provide a complementary 
language to the traditional use of spherical harmonics, and provide the computational ability to 
simulate gradiometer data as predicted from arbitrarily complicated finite element mass-density 
models of the Earth’s interior. 
 
B. PROGRESS AND RESULTS 
 

We have developed a wavelet-based algorithm for the fast-forward computation of the 
gravitational potential generated from arbitrarily complicated finite element models of the 
Earth’s mass density.  The primary motivation for the development of computationally efficient 
forward modeling is the future launch of gravity-gradiometer missions which promise to return 
highly sensitive data with the potential of offering penetrating insight into the structure of the 
Earth’s mass density.  It is well known that inversion of the gravitational field for the mass 
density is an ill-posed problem, with a non-unique solution in the absence of constraints. We 
have instead focused on a fast-forward computational solution in the context of a Bayesian 
approach to the inverse problem, in which fluctuations in mass density about a detailed “virtual 
Earth” model can be well described as spatially localized basis functions (i.e. wavelets).  Fast-
forward-modeling capabilities will allow more realistic and detailed models of the Earth’s mass 
density, and improve our ability to infer fluctuations in mass density about this model. 
 

Gradiometer data can potentially provide a unique perspective on internal changes in the 
Earth and its response to the primary forcings of the Earth system as a whole – two of the 
fundamental problems of central importance to NASA’s Earth Science Enterprise. The dynamic 
range of geophysical processes imprinting a detectable signature on the gravitational potential 
ranges from time scales on the order of milliseconds to millennia, and spatial scales from 



 

 218

microscopic to continental. It has been demonstrated that the signature of great subduction 
earthquakes on the gravitational potential will be detectable with observations returned from 
GRACE [1].  In addition, the signature of mass motions occurring through mantle convection, 
magma movements, and ice-mass changes are other examples of processes potentially detectable 
with space-based gradiometry data. 
 

Exploiting gradiometry data to probe the full spatio-temporal dynamic range of 
geophysical phenomena demands models of the density fluctuations well matched to the relevant 
physics.  Traditional methods relate the observed gravitational potential to the estimated mass 
density through spherical harmonics.  However a decomposition in terms of these global basis 
functions results in a decreased signal-to-noise for localized geophysical processes. While some 
mass-density fluctuations are in fact global in nature, and therefore efficiently matched with 
spherical harmonics, others are much more spatially local in extent.  What has not been fully 
exploited for both the forward and inverse solutions to the gravitational inference problem is the 
use of spatially localized basis functions to represent the mass-density fluctuations.  Such a 
wavelet-based expansion can provide a complementary language to the traditional use of 
spherical harmonics, and provide enhanced sensitivity for the detection of localized mass-density 
fluctuations.  Furthermore, the simulation of data arising from a specific mass-density model can 
also benefit from a decomposition of the Earth’s mass density as a linear combination of 
spatially localized  functions. 
 

In any basis chosen, inferring the mass-density fluctuations from gradiometry data is not 
a well-posed problem.  However, there are physically reasonable constraints that can be imposed 
on solutions, allowing useful information to be extracted from the data.  Specifically, the inverse 
problem may be regularized by the assumption that the fluctuations in mass density about initial 
models of the interior structure of the Earth are well understood statistically.  This forms a 
Bayesian approach to the inverse problem, and a unique inversion of gradiometry data is possible 
with this type of statistical regularization – however the solution is a biased estimate of the mass 
density and, while a unique solution, not necessarily the true mass density.  Of crucial 
importance then is precisely characterizing the “null space” of the proposed inverse algorithm. 

 

B1. Overview 
 

There are two main ideas, which will be explained in more detail in what follows, for the 
computational approach to fast computation of the gravitational potential from arbitrarily 
complicated finite element models of mass density. The first is the recognition that when 
fluctuations in mass density are expressed in a wavelet basis, the resulting gravitational field is 
exactly given by a linear combination of localized functions, such as a linear combination of 
Gaussians.  This provides an efficient strategy when computing the gravitational potential from a 
finite element mass-density model.  Given the wavelet decomposition of the mass density, we 
can compute the gravitational potential on a spherical surface with the use of a recently 
discovered fast convolution on the sphere [2].  The existence of the fast-convolution method on a 
sphere provides the ability to make simulations of GRACE data in the presence of complicated 
models, as well as quantify the ability to extract the signature of some particular geophysical 
process in the presence of other known signals. 
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An advantage of the use of the fast-convolution approach is the ability to compute the 
potential on many spherical surfaces.  This will allow for the efficient computation of more 
realistic (ellipsoidal) orbits which are contained in a spherical shell.  The method is also general 
enough to accommodate non-spherically symmetric wavelets (such as gradient wavelets), 
providing the ability to efficiently model a wide diversity of geophysical signals of interest. 

 

B2. Wavelet Approach to the Analysis and Modeling of Gravity Data 
 

Although the gravity-gradiometer inverse problem is non-unique, there is a diversity of 
relevant information that can be used to constrain solutions and extract interesting information 
from the data. We take the view that:  1) the solutions sought are perturbations about some 
baseline model, in which the gradient tensor field is predicted uniquely in the forward direction, 
2) the perturbations in the mass density to be inferred from the data are modeled in terms of 
three-dimensional spatially localized functions in the Earth's interior.  The expansion of the 
gravitational potential on the sphere with localized basis functions is directly related (as we will 
show) to the assumption of localized density fluctuations.  This approach, other than the 
traditional spherical harmonic basis expansion of the mass-density fluctuations, can lead to a 
higher signal-to-noise for detection of local fluctuations in the mass density about the baseline 
model. 
 

In more detail, we propose to model the mass-density interior to the Earth as the linear 
combination 
 
ρ(r) =ρ0 (r)+δρ(r) 
 
where ρ0(r)  is any assumed initial guess of the mass density, and δρ(r) are fluctuations about 
that guess. The solution of the gravitational potential from Laplace's equation can be written 
 
Φ0(r)= dr' G(r,r')ρ0(r')∫
Φ(r)=Φ0 (r) + dr' G(r,r')δρ(r')∫

 

 
whereG(r,r')  is the Green's function of Laplace's equation.  The first equation above is solved 
uniquely in the forward direction from the assumed ρ0(r') .  The second equation is solved in the 
inverse direction for the mass-density fluctuations from the observed gravitational potential (or 
gradient tensor). 
 

The fluctuations in mass density δρ(r')  will be represented as a linear combination of 
localized functions.  To provide some intuition about this approach, consider the particularly 
simple example given by a fictional planet which has uniform mass density other than a 
spherically symmetric hole at some depth.  If the initial baseline model is taken to be a uniform-
density sphere, the exact solution to the gravitational potential would simply be that given by a 
uniform-density sphere with a hole.  The fluctuation in the gradient tensor would only involve 
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the term from the hole, and the only two parameters of the problem would be the size and 
location of the hole.  Therefore, the simpler a solution is, the better constrained it is by the data. 
 

This example is obviously not realistic.  However, it is relevant to consider localized 
fluctuations in mass density about some local mean density, particularly when we are interested 
in detecting changes in the mass density, as the result of geophysical activity. Given a partial 
understanding of the relevant geophysics in various regions in the earth, the type of fluctuations 
in mass density can be constrained.  This illustrates the importance of the specific computational 
problem focused on in this proposal – that of forward modeling.  If we are to limit the 
fluctuations in the mass density to a “sparse” collection of localized fluctuations, then much of 
the complexity of the mass density should be taken into account in a forward model, and these 
effects “subtracted” from the gradiometry data.  Of course what we really seek is the 
computational means to incorporate arbitrary complexity in baseline models of the Earth’s 
interior, compare with observations, and then guess at improvements to the model.  Therefore, 
fast and efficient forward solution for the gravitational potential for continuous, complicated 
mass densities is central to “inverting” gravity data. 
 

In particular, the optimal language to use in modeling the density fluctuations comes 
directly from the physics of the problem.  By a “local density fluctuation” we essentially mean a 
deviation of the mass density from a local average. Local averages can be defined according to 
 
Local Average ∝ dre−(r−b )A (r− b) ρ(r)∫  
 
where the matrix A  describes an ellipsoidal shape centered at location b  characterized in the 
three principal orthogonal directions as A = diag(λ1,λ2,λ3) .  A fluctuation is then given roughly 
by the difference of the mass density at some point with the local average at the same point.  
More generally, we can characterize fluctuations of a certain scale according to the Laplacian of 
localized Gaussians 
 
Fluctuation= dr∇ 2∫ e−(r−b )A (r− b)ρ(r) 
 

For example, a hole at some location in the Earth's interior b  is given by a circularly 
symmetric Gaussian with λ1 = λ2 = λ3 . Cylindrical fluctuations can be more accurately 
represented as a string of elongated Gaussian blobs. 
 

Using the localized basis functions, we will assume the mass-density fluctuations can be 
written as a linear superposition 
 
δρ(r) = F(bi

i
∑ ) ∇ 2e−(r− b i )A(r−b i )[ ] 

 
where the mass-density fluctuation coefficients F(b)  are ultimately to be inferred from the 
gradiometer data.  It can be shown, using the Laplacian of Gaussian blobs, that the resulting 
gravitational potential is given directly as a linear combination of Gaussians,  
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Φ(r) −Φ0(r) = F(bi
i
∑ ) e−(r− b i )A(r−b i )[ ] 

 
Simply taking the gradient tensor of this equation gives 

 
∇α∇βδΦ(r) = F (bi

i
∑ ) ∇α∇βe−(r− b i )A(r−b i )[ ] 

 
The important property of the functions 

 
∇α∇βe−(r−b i )A(r−b i ) 
 
is that they provide the ability to characterize the fluctuations locally (to some chosen scale). 
 
The expansion of the mass density of the Earth in a wavelet basis is completely general.  
Specifically, any mass-density model for the Earth can be convolved with the chosen wavelets at 
all positions and scales to compute the wavelet coefficients 
 
F(b;σ) = dr ρ(r)∇ 2∫ g(r − b;σ)  
 
which generalizes the above to allow for wavelets of any size.  Although the wavelets discussed 
here are non-orthogonal (and in fact form an overcomplete basis), it can be shown that the mass 
density is uniquely reconstructed from these coefficients according to an inverse transform, 
which similarly gives the gravitational potential as an integration over the wavelet coefficients, 
convolved with Gaussian basis functions at various positions and scales. 
 
B3. Forward Computation of the Gravitational Potential 
 

The above discussion dealt with the computation of the gravitational potential 
everywhere as generated from the mass density expanded in a wavelet basis.  In practice, we will 
only observe the gravitational potential along a surface, such as the flight path of an airplane or 
the orbit of a spacecraft.  As the spacecraft moves along its orbit, it is able to map out the 
gravitational potential (or gradient tensor) over an entire path of the sphere.  Computing the 
gravitational potential on a spherical surface enclosing the Earth has traditionally been 
approached by computing the spherical harmonic coefficients of the gravitational potential 
directly from the detailed mass-density model (the so-called Stokes Coefficients).  The 
gravitational potential is then given directly by an inverse spherical harmonic transform.  By 
contrast, what is proposed here is to exploit the wavelet decomposition of the mass density to 
formulate the computation of the gravitational potential on the sphere as a “convolution on the 
sphere,” for which a fast algorithm has recently been discovered [2]. 
 

Briefly, the forward computation proceeds as follows:  Restricting the gravitational 
potential to a sphere of radius R, we can write the gravitational potential in terms of the wavelet 
decomposition 
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Φ(Rn) = dΩ∫ b2db F(bn' ,σ) g(Rn −bn' ;σ)∫  
 

Interchanging the order of integration, and breaking up the integral above as a sum over 
discrete spherical shells, we can write 
 
Φ(Rn) = bi

2∆b
i
∑ dΩ F (bn' ,σ) g(Rn− bn' ;σ)∫  

 
The main idea is to notice that each spherical shell for the Earth gives a contribution 

which can be computed as a convolution on the sphere, 
 

  (g o F )(n;b,σ) ≡ dΩ F(bn' ,σ) g(Rn −bn' ;σ)∫  
 
where now the coefficients within a specific spherical shell are thought of as a function on the 
sphere, and the localized basis function projected on the spherical surface the convolution kernel. 
The integral above is exactly of the form considered by [2].  For the case considered here, the 
convolution kernel is circularly symmetric, and localized about the direction defined by a unit 
vector from the center of the Earth in the direction of the centroid of the mass-wavelet mode. 
 

The primary result in [2] is that such a convolution can be computed by first computing 
 
Cmm'm " = flm dmm '

l

l
∑ (π /2) dm'm "

l (π /2) glm "
*  

 
where  dmm'

l  are known as the Wigner functions for which recursive function evaluations exist [4] 
(and for which these can be pre-computed and stored in memory), glm "

*  are the spherical 
harmonic coefficients of the convolution kernel, and flm  are the spherical harmonic coefficients 
for the wavelet coefficients from a specific spherical shell projected on the sphere.  We only 
need to compute the spherical harmonic transform for each spherical shell 
 
flm = dΩ F (bn;σ) Ylm∫ (n) 

 
This can be computed quickly by interpolating the values of the wavelet coefficients in 

projection on the sphere, followed by fast spherical harmonic transform.  These coefficients only 
need to be computed once for a given mass-density model in order to generate the gravitational 
potential on any spherical surface. 
 

As shown in [2], the convolution integral is now given by inverse Fourier Transform 
 

C(θ,ϕ,ω) = Cmm'm"
m,m ',m "=−L

L

∑ eimϕ+ im'θ +im "ω  

 
where the direction on the sphere has been parameterized by n = (θ,ϕ) and ω  parameterizes the 
orientation (which is irrelevant if a spherically symmetric wavelet is used for the mass density).  
Therefore the decomposition of the mass density of the Earth in a wavelet basis leads directly to 
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the computation of the gravitational potential on spherical surfaces as convolution on the sphere, 
for which an effective mapping of FFT techniques from the plane to the sphere has been 
discovered [2]. 
 
C. SIGNIFICANCE OF RESULTS 
 

The approach proposed here is fundamentally different from the traditional approach of 
computing the spherical harmonic coefficients directly from the mass-density model (without 
first taking the wavelet transform of the mass density).  Briefly, the Stokes coefficients are 
computed according to [3] 
 
Clm + Slm = r2drdΩ r l∫ Ylm(n)ρ(rn)  
 
and the gravitational potential is then given by an inverse spherical harmonic transform.  The 
primary drawback to this approach is the dependence of the Stokes coefficients on the order of 
the spherical harmonic mode itself.  This results in a different weighting for the radial part of the 
integral for each multipole order. What makes this new approach fundamentally much faster is 
that the computation of the Stokes coefficients demand that for each multipole order, we 
integrate through the mass density with a radial moment depending on the order itself.  This 
effectively requires that all the radial moments of the mass density are known.  By contrast, as 
we will discuss shortly, the potential on the sphere can be computed from the wavelet 
coefficients with only one specific integration through the volume, at the various scales of the 
wavelet decomposition. 
 

The wavelet formalism here also captures the dependence of the gravitational potential as 
a function of the altitude of the spherical surface – this dependence is entirely contained in the 
spherical harmonic coefficients of the projected Gaussian on the sphere.  For a circularly 
symmetric kernel, there is no azimuthal dependence only requiring a Legendre polynomial 
decomposition. This suggests that the gravitational potential for spherical surfaces farther away 
can be generated recursively through a local averaging (low-pass filter) on spherical surfaces 
interior to a given radius.  This can be made exact for a spherically symmetric wavelet by 
breaking up the sum over multipole order into sums over various spatial frequency bands.  Then, 
for any given altitude, we can simply reweight each band in order to synthesize the correct 
convolution kernel.  The weights can be computed as a function of the altitude of the spherical 
surface, and therefore provides an extremely fast way of computing the gravitational potential 
from an innermost spherical surface. 
 

This capability is of primary importance when taking into account realistic orbits of a 
spacecraft.  Almost all real orbits will lie on ellipsoidal surfaces (which also precess).  However, 
we can quickly compute the predicted gravitational potential for many spherical surfaces that 
contain the orbit of the spacecraft – this will allow a more direct comparison of predictions from 
a specific mass-density model with observations, taking into account one of the largest 
complications in this type of analysis.  This capability will also be useful in the analysis of data 
returned from spacecraft orbiting other planets. 
 

Of particular importance is the ability to quickly compute the change in the gravitational 
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field due to a localized fluctuation along a wavelet direction. At any point on the orbit, the 
response of the gradiometer is most strongly influenced by mass-density fluctuations in the 
region of the Earth’s interior directly below the spacecraft.  The ability to detect mass-density 
fluctuations can be enhanced if the response of the gravitational potential to fluctuations below 
the spacecraft and close by is characterized.  If we compare the forward predictions with the 
observed potential and find a discrepancy, we can correct the mass-density model by varying the 
mass density along some wavelet direction (with some particular scale) at a position directly 
below the location in the orbit.  Our computational framework allows this change to be 
integrated quickly into a new prediction for the gravitational potential as follows:  The change to 
the coefficient is centered about one “point” in the Earth’s interior, and therefore localized about 
a specific direction in projection.  Therefore, the change in the spherical harmonic coefficients 
are immediately known in terms of the Wigner functions, and complex exponentials in terms of 
the Euler angles characterizing the direction on the sphere.  These coefficients are then 
effectively filtered by multiplication by the coefficients for the kernel, and inverse Fourier 
transforming gives the resulting map of the potential on the spherical surface. 
 

The traditional approach to relating the mass-density fluctuations to the observed 
fluctuations in the acceleration of gradient tensor is through a spherical harmonic decomposition 
of the gravitational potential.  The coefficients of the spherical harmonic expansion of the field 
are related to the mass-density fluctuations.  However, the drawback with the use of the spherical 
harmonics is that every coefficient receives a contribution from all mass-density fluctuations, 
since the spherical harmonic transform is given by integration over the entire sphere.  The 
situation is equivalent to taking the Fourier transform of a point mass – all the Fourier 
coefficients will have the same amplitude, with a very specific phase given by the location of the 
point mass.  With several point masses, the ability to disentangle the phases and recover the 
locations becomes more difficult. 
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